Version imprimable |
Conditioning of surfaces in particle accelerators (Conditionnement des surfaces dans les accélérateurs de particules) Petit, Valentine 2020-01-17 Institut Supérieur de l'Aéronautique et de l'Espace | ||
Directeur(s) de thèse: Paulmier, Thierry; Belhaj, Mohamed Laboratoire : Département Physique, Instrumentation, Environnement, Espace - DPHY (depuis 2017) Ecole doctorale : Génie Electrique, Electronique et Télécommunications -GEET Classification : Physique | ||
Mots-clés : Conditionnement, Electrons secondaires, Surface, Cuivre, LHC, Carbone Résumé : Le nuage d'électrons se développant dans les chambres à vide du LHC lors de l'opérationdes faisceaux de protons engendre une charge thermique sur le système cryogénique deses aimants supraconducteurs. La valeur de cette charge thermique présente une fortedispersion entre les différents arcs du LHC, pourtant identiques par design, dont certainssont actuellement proches de la limite de la capacité cryogénique. Sous l'effet du nuaged'électrons, le conditionnement de la surface de cuivre des chambres à vide du LHCa lieu, réduisant son rendement d'électrons secondaires. Un tel processus est supposédécroitre l'activité du nuage vers un niveau acceptable pour l'opération du LHC et sembledonc localement mis en défaut. Ce travail a analysé les phénomènes de conditionnementdu cuivre ayant lieu dans le LHC afin d'expliquer les différences d'activités du nuageélectronique observées dans l'accélérateur. L'étude des mécanismes de conditionnementdu cuivre en laboratoire, à température ambiante, en remplaçant le nuage par un canon àélectrons, a mis en évidence le rôle crucial du carbone dans la décroissance du rendementd'électrons secondaires. L'étude du déconditionnement, ayant lieu à la remise à l'air d'unesurface irradiée (étape nécessaire à l'extraction de tubes faisceau du LHC) a permisd'établir une procédure limitant l'effacement de l'état de conditionnement in-situ de cescomposants en vue de l'analyse de leur surface en laboratoire. Des analyses réaliséessur des tubes faisceau extraits d'un aimant à faible charge thermique montrent que cessurfaces présentent des caractéristiques similaires à celles conditionnées en laboratoire.En revanche, les tubes faisceau extraits d'un aimant à forte charge thermique présententdu CuO ainsi qu'un taux de carbone surfacique extrêmement faible. Il est prouvé que cesmodifications résultent de l'opération du LHC et conduisent à un conditionnement altéréde ces surfaces. Ces modifications sont actuellement le meilleur candidat pour expliquerl'origine des différences de charge thermique observées dans le LHC. Résumé (anglais) : The electron cloud developing in the vacuum chambers of the LHC during the protonbeam operation is responsible for heat load on the cryogenic system of the superconductingmagnets. The observed heat load exhibits a strong dispersion between the differentLHC arcs, although identical by design. Some of them are currently close to the limitof the cryoplant capacity. Under the effect of the cloud itself, conditioning of the coppersurface of the LHC beam pipes is expected, decreasing thus the secondary electronyield of the surface and leading to a decrease of the cloud intensity down to operationcompatiblelevels. Such a process seems therefore to be hindered in some parts of theLHC ring. This work aims to understand the copper conditioning processes occurringin the LHC, to unravel the origin of the heat load dispersion observed along the ring.Copper conditioning mechanisms were studied in the laboratory at room temperature bymimicking the electron cloud by an electron gun. The fundamental role of carbon, amongthe surface chemical components, in the reduction of the secondary electron yield duringconditioning was evidenced. Studying the deconditioning, occurring while exposing aconditioned surface to air (necessary step to extract beam pipes from the LHC) allowedestablishing a procedure to limit the erasing of the in-situ conditioning state of suchcomponents before the analysis of their surface in the laboratory. The surface of beampipes extracted from a low heat load magnet were found to have similar characteristicsas the ones conditioned in the laboratory. However, beam pipes extracted from a highheat load magnet exhibit cupric oxide CuO and a very low amount of surface carbon. Itis demonstrated that these modifications are induced by the LHC operation and lead toa slower conditioning of these surfaces. Therefore, these modifications are currently thebest candidate to explain the heat load dispersion observed in the LHC. Langue : Anglais |
Exporter au format XML |