Voir le résumé
Quotidiennement, des objets orbitant à proximité de la Terre (ou géocroiseurs) impactent cette dernière. Lorsque la dimension de l'objet atteint une taille critique (autour de 50m de diamètre),les conséquences au sol peuvent devenir dramatiques.De plus, ces objets ont une occurrence d'impact séculaire, donc à l'échelle d'une vie humaine. L'entrée d'un tel objet met en œuvre de nombreux phénomènes, parfois peu ou pas connus de manière précise : AéroThermoDynamique (ATD) de l'écoulement, rayonnement, ablation, fragmentation. La grande variété de conditions d'entrée étudiées nécessite de plus une étude paramétrique approfondie. Notre thèse est que la phase de rentrée et les phénomènes s’y déroulant jouent un rôle fondamental dans la prévision des risques d'impact au sol. Ainsi, nous avons quantifié ces phénomènes afin d'en établir leurs conséquences pendant la rentrée puis au sol : Nombre et tailles des fragments, empreinte au sol, vitesse(s), masse(s) et énergie cinétique finales. Des simulations ATD préliminaires ont permis de voir que l'écoulement post-choc était en équilibre thermochimique et rayonnait de façon importante. De ce fait des calculs de rayonnement au niveau de la ligne d'arrêt pour différents points de vol ont été effectués, en vu de développer une loi analytique permettant d’estimer correctement le flux radiatif pour nos conditions d’entrée. Cette étude a mis en défaut la représentativité des formules analytiques pré-existantes pour les conditions considérées ici. Du fait du flux thermique incident, un géocroiseur perd de la masse par ablation. Deux modélisations de ce phénomène ont été réalisées, afin d'en évaluer l'incidence en terme de pertes de masses et changements de forme, et donc sur la trajectoire. Nous avons également modélisé le phénomène de fragmentation, de l'initiation de la rupture du fait des contraintes mécaniques à la génération de fragments et à leur dynamique d'évolution. Cette étude a montré l'importance de ce phénomène sur la prévision d'impact, en particulier sur le nombre de fragments impactant et leur énergies cinétiques d'impact. De plus, les interactions entre fragments réduisent la dispersion au sol.Enfin des simulations de trajectoires 1D et 3D avec modélisations de l’ ablation et la fragmentation ont été effectuées sur 3 exemples d'entrée. Elles ont mis en évidence l'importance des paramètres d'entrée (vitesse et incidence en particulier) dans l'estimation de l'impact au sol, et démontré l'influence protectrice de l'atmosphère dans l'estimation des conséquences au sol, du fait en particulier du phénomène de fragmentation, et dans une moindre mesure d'ablation.