|<
<< Page précédente
1
Page suivante >>
>|
5
10
15
20
25
30
35
40
documents par page
Tri :
Date
Editeur
Auteur
Titre
Institut Supérieur de l'Aéronautique et de l'Espace
/ 23-03-2012
Virmontois Cédric
Voir le résumé
Voir le résumé
L'’imagerie spatiale est aujourd'hui un outil indispensable au développement durable, à la recherche et aux innovations scientifiques ainsi qu’à la sécurité et la défense. Fort de ses excellentes performances électro-optiques, de son fort taux d’intégration et de la faible puissance nécessaire à son fonctionnement, le capteur d’images CMOS apparait comme un candidat sérieux pour ce type d’application. Cependant, cette technologie d’imageur doit être capable de résister à l’environnement radiatif spatial hostile pouvant dégrader les performances des composants électroniques. Un nombre important d’études précédentes sont consacrées à l’impact des effets ionisants sur les imageurs CMOS, montrant leur robustesse et des voies de durcissement face à de telles radiations. Les conclusions de ces travaux soulignent l’importance d’étudier les effets non-ionisants, devenant prépondérant dans les imageurs utilisant les dernières évolutions de la technologie CMOS. Par conséquent, l’objectif de ces travaux de thèse est d’étudier l’impact des effets non-ionisants sur les imageurs CMOS. Ces effets, regroupés sous le nom de déplacements atomiques, sont étudiés sur un nombre important de capteurs d’images CMOS et de structures de test. Ces dispositifs sont conçus avec des procédés de fabrication CMOS différents et en utilisant des variations de règle de dessin afin d’investiguer des tendances de dégradation commune à la technologie d’imager CMOS. Dans ces travaux, une équivalence entre les irradiations aux protons et aux neutrons est mise en évidence grâce à des caractéristiques courant-tension et des mesures de spectroscopie transitoire de niveau profond. Ces résultats soulignent la pertinence des irradiations aux neutrons pour étudier les effets non-ionisants. L’augmentation et la déformation de l’histogramme de courant d’obscurité ainsi que le signal télégraphique aléatoire associé, qui devient le facteur limitant des futures applications d’imagerie spatiale, sont évalué et modélisés. Des paramètres génériques d’évaluation des effets des déplacements atomiques sont mis en évidence, permettant de prévoir le comportement des capteurs d’images CMOS en environnement radiatif spatial. Enfin, des méthodes d’atténuation et des voies de durcissement des imageurs CMOS limitant l’impact des déplacements atomiques sont proposées.
|
Texte intégral
|<
<< Page précédente
1
Page suivante >>
>|
5
10
15
20
25
30
35
40
documents par page