|<
<< Page précédente
1
Page suivante >>
>|
5
10
15
20
25
30
35
40
documents par page
Tri :
Date
Editeur
Auteur
Titre
Institut Supérieur de l'Aéronautique et de l'Espace
/ 13-12-2017
Brunet Antoine
Voir le résumé
Voir le résumé
L’estimation de la charge d’un satellite et du risque de décharge nécessite dans certains cas la prise en
compte dans les modèles numériques d’échelles spatiales très différentes. En particulier, les interconnecteurs
présents à la surface des générateurs solaires d’un satellite sont susceptibles de modifier son
équilibre électrostatique lors de missions spatiales rencontrant un environnement plasma dense. Une
modélisation classique de cet effet nécessiterait le maillage d’éléments à des échelles submillimétriques,
sur un satellite de plusieurs dizaines de mètres d’envergure, ce qui rendrait la simulation extrêmement
onéreuse en temps de calcul. De plus, ces interconnecteurs sont parfois fortement chargés positivement
par rapport à l’environnement, ce qui empêche l’application du modèle de Maxwell-Boltzmann classiquement
utilisé pour les populations d’électrons. Dans une première partie, nous avons développé une
méthode itérative de type Patch adaptée à la résolution du problème non-linéaire de Poisson-Boltzmann
pour la simulation du plasma spatial. Cette méthode numérique multigrille permet la simulation de
l’impact d’éléments de petite taille à la surface d’un satellite complet. Dans une seconde partie, nous
avons développé un schéma correctif permettant d’utiliser le modèle de Maxwell-Boltzmann pour la
population d’électrons, malgré la présence de surfaces satellites chargées positivement, en y ajoutant un
terme de correction calculé à l’aide de la méthode Particle-in-Cell. Nous avons montré que ce schéma
permet, tout en limitant le coût en calculs, de déterminer avec précision les courants collectés par les
surfaces du satellites, qu’elles soient chargées négativement ou positivement.
|
Texte intégral
Institut Supérieur de l'Aéronautique et de l'Espace
/ 23-11-2017
Benacquista Rémi
Voir le résumé
Voir le résumé
Les ceintures de radiation correspondent à la région de la magnétosphère dans laquelle se trouvent les particules de hautes énergies. Le couplage entre le vent solaire et la magnétosphère donne lieu à des variations des flux de particules sur plusieurs ordres de grandeurs. L’objectif de cette thèse est d’observer et caractériser ces variations de flux d’électrons au passage de différents types d’événements tels que les régions d’interaction en co-rotation (CIRs) et les éjections de masse coronale interplanétaires (ICMEs). Pour cela, nous avons traité et analysé les données de plusieurs types: paramètres du vent solaire, indices géomagnétiques et flux d’électrons dans les ceintures de radiation. Dans les trois premiers chapitres, nous rendons compte de la complexité de l’environnement spatial Terrestre et présentons les différentes données utilisées. Les travaux de thèse sont ensuite organisés en quatre chapitres. Premièrement, nous utilisons les mesures des satellites NOAA-POES afin de caractériser les flux d’électrons dans les ceintures. Nous étudions ensuite les différences de variations de flux causées par les CIRs et les ICMEs en fonction de l’énergie des électrons et du paramètre L*. Après avoir montré le fort lien entre les intensités d’orages magnétiques et les variations de flux, nous nous focalisons sur les ICMEs et la variabilité des orages qu’elles causent. Enfin, nous insistons sur l’importance des enchaînements d’événements. Après avoir quantifié la forte tendance qu’ont les ICMEs à former des séquences, nous réalisons une étude statistique sur les orages qu’elles causent, puis trois études de cas afin d’illustrer leurs effets sur les ceintures.
|
Texte intégral
Institut Supérieur de l'Aéronautique et de l'Espace
/ 10-11-2017
Fil Nicolas
Voir le résumé
Voir le résumé
La fusion nucléaire contrôlée par confinement magnétique avec les réacteurs de type Tokamaks et les applications spatiales ont en commun d’utiliser des composants Haute-Fréquence (HF) sous vide à forte puissance. Ces composants peuvent être sujets à l’effet multipactor qui augmente la densité électronique dans le vide au sein des systèmes, ce qui est susceptible d’induire une dégradation des performances des équipements et de détériorer les composants du système. Ces recherches consistent à améliorer la compréhension et la prédiction de ces phénomènes. Dans un premier temps nous avons réalisé une étude de sensibilité de l’effet multipactor au rendement d’émission électronique totale (noté TEEY). Cette étude a permis de montrer que l’effet multipactor est sensible à des variations d’énergies autour de la première énergie critique et dans la gamme d’énergies entre la première énergie critique et l’énergie du maximum.
De plus, les composants HF utilisés dans les réacteurs Tokamak et dans le domaine du spatial peuvent être soumis à un champ magnétique continu. Nous avons donc développé un nouveau dispositif expérimental afin d’étudier ce phénomène. Le fonctionnement du dispositif et la méthode de mesure ont été analysées et optimisées à l’aide de modélisations numériques avec le logiciel PIC SPIS. Une fois que l’utilisation du dispositif a été optimisée et que le protocole de mesures a été validé, nous avons étudié l’influence d’un champ magnétique uniforme et continu sur le TEEY du cuivre. Nous avons démontré que le rendement d’émission électronique totale du cuivre est influencé par la présence d’un champ magnétique et par conséquent également l’effet multipactor.
|
Texte intégral
Institut Supérieur de l'Aéronautique et de l'Espace
/ 09-11-2017
Pierron Juliette
Voir le résumé
Voir le résumé
L’espace est un milieu hostile pour les équipements embarqués à bord des satellites. Les importants flux d’électrons qui les bombardent continuellement peuvent pénétrer à l’intérieur de leurs composants électroniques et engendrer des dysfonctionnements. Leur prise en compte nécessite des outils numériques 3D très performants, tels que des codes de transport d’électrons utilisant la méthode statistique de Monte-Carlo, valides jusqu’à quelques eV. Dans ce contexte, l’ONERA a développé, en partenariat avec le CNES, le code OSMOSEE pour l’aluminium. De son côté, le CEA a développé, pour le silicium, le module basse énergie MicroElec dans le code GEANT4. L’objectif de cette thèse, dans un effort commun entre l’ONERA, le CNES et le CEA, est d’étendre ces codes à différents matériaux. Pour ce faire, nous avons choisi d’utiliser le modèle des fonctions diélectriques, qui permet de modéliser le transport des électrons à basse énergie dans les métaux, les semi-conducteurs et les isolants. La validation des codes par des mesures du dispositif DEESSE de l’ONERA, pour l’aluminium, l’argent et le silicium, nous a permis d’obtenir une meilleure compréhension du transport des électrons à basse énergie, et par la suite, d’étudier l’effet de la rugosité de la surface. La rugosité, qui peut avoir un impact important sur le nombre d’électrons émis par les matériaux, n’est habituellement pas prise en compte dans les codes de transport, qui ne simulent que des matériaux idéalement plats. En ce sens, les résultats de ces travaux de thèse offrent des perspectives intéressantes pour les applications spatiales.
|
Texte intégral
Institut Supérieur de l'Aéronautique et de l'Espace
/ 25-10-2017
Al Youssef Ahmad
Voir le résumé
Voir le résumé
L’environnement radiatif spatial est particulièrement critique pour la fiabilité des circuits intégrés et systèmes électroniques embarqués. Cet environnement chargé en particules énergétiques (proton, électron, ions lourds, etc) peut conduire à des pannes transitoires (SET), ou permanentes (SEU) et dans certains cas destructives (type Latchup, SEL) dans les dispositifs embarqués. L'effet d'une seule particule est identifié comme un événement singulier (SEE). Les contraintes imposées par l'intégration technologique poussent les fabricants micro-électroniques à prendre en considération la vulnérabilité de leurs composants vis-à-vis du Latchup tout en considérant les phénomènes non destructifs tels que la corruption de données (SEU/MBU). Cette thèse est le fruit d'une collaboration entre l'ONERA et Sofradir, fabriquant électronique d'imageurs infrarouge. L'objectif de cette thèse est d'étudier les effets singuliers (SET/SEU/SEL) de la technologie CMOS utilisée par Sofradir dans des conditions de températures cryogéniques, et plus particulièrement l'effet Latchup.
|
Texte intégral
Institut Supérieur de l'Aéronautique et de l'Espace
/ 09-10-2017
Herrera Damien
Voir le résumé
Voir le résumé
Depuis le début de l’ère spatiale avec le lancement du satellite Spoutnik 1 en 1957, les ceintures de radiation
terrestres n’ont cessé de faire l’objet d’études du fait de leur dangerosité pour les satellites mais aussi pour l’être
humain. En effet, lors d’une forte activité solaire, l’injection de particules dans cet environnement radiatif peut induire
des flux jusqu’à 1000 fois plus élevés que par temps calme. Par conséquent, il est important d’en comprendre
la physique ainsi que la dynamique au cours de ce que l’on appelle un orage géomagnétique. Dans ce but, le Département Physique Instrumentation Environnement et Espace (DPhIEE) de l’ONERA développe depuis maintenant
plus de 20 ans la famille de modèles Salammbô reproduisant de façon robuste et en trois dimensions la dynamique
des particules piégées dans ces ceintures. Néanmoins, bien que précis au-delà d’environ 100 keV, la physique et les
hypothèses prises en compte dans ce modèle restent insuffisantes en deçà. En effet, aux basses énergies, les ceintures de radiation ne peuvent plus être considérées comme homogènes autour de la Terre. L’objectif de cette thèse a donc été de prendre en compte une quatrième dimension, le temps magnétique local (MLT), afin de mieux reproduire l’évolution des structures fines lors d’un orage géomagnétique. La première partie s’est portée sur l’optimisation du
schéma numérique. L’ajout d’une quatrième dimension induit, via l’apparition d’un terme d’advection, une forte
diffusion numérique qu’il convient de limiter, tout en tenant compte du temps de calcul. L’équation statistique
implémentée a alors été discrétisée selon un schéma de type Beam-Warming du second ordre couplé à un limiteur
Superbee, garantissant une propagation satisfaisante de la distribution initiale. Une fois les problèmes numériques
maitrisés, les différents mécanismes physiques pilotant la dynamique des particules piégées ont été implémentés
dans le code, avec une attention toute particulière sur la dépendance en MLT de l’interaction onde-particule. La
prise en compte des champs électriques magnétosphériques fut également nécessaire. En effet, ils constituent l’un
des moteurs principaux du mouvement des particules de basses énergies. Le modèle Salammbô 4D a ensuite été
validé par comparaison avec le modèle 3D déjà existant sur une simulation de l’orage magnétique de Mars 2015.
Les résultats ont montré une bonne restitution de la dynamique des ceintures de radiation, avec en plus l’accès à la
phase principale de l’orage. Cet évènement a ensuite été modélisé à plus basse énergie pour constater la dynamique
asymétrique des électrons piégés avec le rôle prépondérant du champ électrique de convection. La comparaison avec
les données du satellite THEMIS a montré une bonne modélisation des différents processus physiques, notamment
celui de « dropout » par traversée de la magnétopause. Enfin, la mise en place d’une condition limite dynamique
modulée par les paramètres du vent solaire et dépendante du MLT ouvre de nombreuses perspectives.
|
Texte intégral
Institut Supérieur de l'Aéronautique et de l'Espace
/ 26-09-2017
Ursule Marie-Cécile
Voir le résumé
Voir le résumé
Les capteurs d'images sont utilisés dans diverses applications spatiales : observation spatiale, calcul d'attitude etc. Ces capteurs évoluent dans l’environnement spatial dont les rayonnements entraînent une dégradation de leurs performances. Parmi les paramètres impactés, nous nous intéressons au courant d'obscurité des pixels. Ce courant parasite correspond à la génération de porteurs de charges sans lumière par simple excitation thermique, induisant l'augmentation du bruit de fond des images. Les pixels fortement dégradés sont particulièrement pénalisants pour les missions spatiales. Cet effet pousse donc la communauté spatiale à développer des méthodes de prédiction performantes. L'ONERA a développé une méthode originale de prédiction des courants d'obscurité basée sur la méthode de Monte Carlo et la librairie GEANT4. L’objectif de la thèse est d’améliorer la prédiction de l’outil. Dans un premier temps, nous avons modifié l'outil numérique pour des cas extrêmes de modélisations pour lesquels les modélisations Monte Carlo sont trop longues. Pour cela, nous avons développé des méthodes utilisant des simplifications statistiques. Dans un second temps, nous avons étudié l’influence de la géométrie du pixel sur le courant d'obscurité. L’idée est de suivre les cascades de dégradations générées par les particules spatiales et de déterminer si ces cascades restent confinées au sein du pixel impacté ou si elles se propagent dans les pixels voisins. Enfin, nous avons élaboré dans notre outil un modèle simulant les mécanismes liés au champ électrique potentiellement responsables des dégradations les plus élevées, les effets Poole-Frenkel et tunnel assisté par phonons.
|
Texte intégral
|<
<< Page précédente
1
Page suivante >>
>|
5
10
15
20
25
30
35
40
documents par page